LAMP STACK UBUNTU

LAMP Stack Install & Setup

BEBEC

A “LAMP” stack is a group of open-
source software that is typically
installed together in order to enable a
server to host dynamic websites and
web apps written in PHP. This term is
an acronym which represents the Linux
operating system, with the Apache web
server. The site data is stored in a
MySQL database, and dynamic content
is processed by PHP.

Step 1 — Installing Apache and
Updating the Firewall

$ sudo apt update
% sudo apt install apache2

$ sudo ufw app list

#Output

Available applications:
Apache
Apache Full
Apache Secure
OpenSSH

sudo ufw allow 'Apache’
sudo ufw status

#Output
Status: active

To Action From

OpenSSH ALLOW Anywhere
Apache ALLOW Anywhere
OpenSSH (v6) ALLOW Anywhere
(v6)

Apache (v6) ALLOW Anywhere
(v6)

sudo systemctl status apache?2

Step 2 — Installing MySQL

% sudo apt install mysqgl-server

This script will remove some insecure default
settings and lock down access to your database
system.

$ sudo mysqgl_secure_installation

Select Y for yes and 1 for medium password

Log in to the MySQL console type:
% sudo mysql

To exit the MySQL console, type:
mysqul> $ exit

Step 3 — Installing PHP

% sudo apt install php libapache2-mod-php
php-mysql

Version check

$ php -v

Step 4 — Creating a Virtual Host

sudo mkdir /var/www/stevenagri.com

sudo chown -R $USER:$USER /var/www/
stevenagri.com

sudo chmod -R 755 /var/www/stevenagri.com
sudo nano /var/www/stevenagri.com/
index.html

sudo nano /etc/apache2/sites-available/
stevenagri.com.conf

#Output

<VirtualHost *:80>
ServerAdmin webmaster@localhost
ServerName stevenagri.com
ServerAlias www.stevenagri.com
DocumentRoot /var/www/stevenagri.com
ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log

combined

</VirtualHost>

sudo a2ensite stevenagri.com.conf
sudo a2dissite 000-default.conf
sudo apache2ctl configtest

sudo systemctl restart apache2

Step 5 — Testing PHP Processing

Create a new file named info.php inside your
custom web root folder:
$ sudo nano /var/www/your_domain/info.php

This will open a blank file. Add the following
text, which is valid PHP code, inside the file:

<?php
phpinfo();

When you are finished, save and close the file.

To test this script, go to your web browser and
access your server’s domain name or IP
address, followed by the script name, which in
this case is info.php:
http://server_domain_or_IP/info.php

http://server_domain_or_ip/info.php

Step 6 How To Secure Apache with
Let's Encrypt

Let’s Encrypt is a Certificate Authority (CA)
that facilitates obtaining and installing free
TLS/SSL certificates, thereby enabling
encrypted HTTPS on web servers

We will use Certbot to obtain a free SSL
certificate for Apache on Ubuntu 20.04, and
make sure this certificate is set up to renew
automatically

Step 1 — Installing Certbot

$ sudo apt install certbot python3-certbot-
apache

https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs
https://certbot.eff.org/

Step 2 — Checking your Apache Virtual Host
Configuration

$ sudo nano /etc/apache2/sites-available/
your_domain.conf

ServerName your_domain
ServerAlias www.your_domain

If you already have your ServerName and
ServerAlias set up like this, you can exit your
text editor.

$ sudo apache2ctl configtest
#You should get a Syntax OK as a response.

$ sudo systemctl| reload apache2

Step 3 — Allowing HTTPS Through the Firewall
To additionally let in HTTPS traffic, allow the
“Apache Full” profile and delete the redundant
“Apache” profile:

$ sudo ufw app list

$ sudo ufw allow ‘Apache Full’

$ sudo ufw delete allow ‘Apache’

Step 4 — Obtaining an SSL Certificate

$ sudo certbot --apache

This script will prompt you to answer a series
of questions in order to configure your SSL
certificate.

Add ServerName your_domain

ServerAlias www.your_domain
Where needed

Step 5 — Verifying Certbot Auto-Renewal

#Let’s Encrypt’s certificates are only valid for
ninety days. This is to encourage users to
automate their certificate renewal process, as
well as to ensure that misused certificates or
stolen keys will expire sooner rather than later.
The certbot package we installed takes care of
renewals by including a renew script to /etc/
cron.d, which is managed by a systemctl
service called certbot.timer.

make sure it’s active:
$ sudo systemctl status certbot.timer

To test the renewal process:
$ sudo certbot renew --dry-run

